Laser Cooling

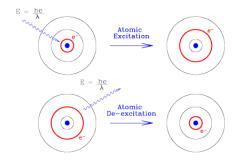
Kristinn Torfason

April 14, 2008

Deceleration of an Atomic Beam

Absorption and Emission of Light Beam Deceleration Compinsation for the Doppler Shift

Optical Molasses


The Doppler Limit

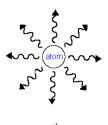
Below the Doppler Limit

Application

Absorption and Emission of Light

Conservation of

- ▶ Energy $(\hbar\omega)$
- ▶ Momentum (ħk)
- Angular momentum (\hbar)


Absorption and Emission of Light

Absorption of N photons

$$\Delta \vec{p} = N\hbar k \hat{z}$$

Emission of N photons

$$\langle \Delta p \rangle = 0$$

- $\mathbf{v}_r = \hbar \mathbf{k}/M \simeq \text{few cm/s}$
- $ightharpoonup v_{RMS} = \sqrt{3kT/m} \approx 500 \, \mathrm{m/s}$ (air at room temprature)

Beam Deceleration

- ▶ Laser beam in the opposite direction to an atomic beam
- Frequency of the laser just below the resonance frequency of the atoms
- Atoms excited to a higher state and decay back to the ground state
- maximum deceleration limited by spontaneous emission rate $(\vec{a}_{max} = \hbar \vec{k} \gamma/2M)$

Beam Deceleration

1. Maximum deceleration

$$\vec{a}_{max} = \hbar \vec{k} \gamma / 2M$$

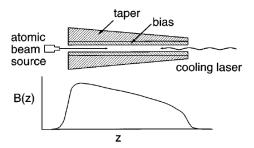
2. Scattering rate

$$\gamma_p = \frac{s_0 \gamma / 2}{1 + s_0 + [2(\delta + \omega_D) / \gamma]^2}$$

- $\omega_D = -\vec{k} \cdot \vec{v}$
- maximum deceleration when $\delta + \omega_D << \gamma$

Beam Deceleration

Doppler shift depends on velocity. Ways to compensate


- 1. Laser Frequency Sweep
 - Change ω_I
- 2. Vary the Atomic Frequency
 - ▶ Change ω_a
 - Magnetic Field (Zeeman effect)
 - Electric Field (Stark effect)
- 3. Vary the Doppler Shift
 - ▶ Change ω_D
- 4. Broadband Light

Laser Frequency Sweep

- ▶ Change ω_I at the rate $\dot{\omega}_I \approx -\dot{\omega}_d$
- Atoms arrive in pulses

Varying the Atomic Frequency

- Spatially varying magnetic field
 - Zeeman effect shifts the resonant frequency
 - $ightharpoonup \Delta E = g\mu_B MB$
 - ▶ Uniform deceleration $B(z) = B_0 \sqrt{1 z/z_0}$

Varying the Atomic Frequency

- ▶ Inhomogeneous DC electric field
 - Stark effect shifts the resonant frequency

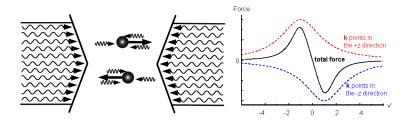
 - Uniform deceleration $\varepsilon(z) = \varepsilon_0 \sqrt{1 \sqrt{1 z/z_0}}$

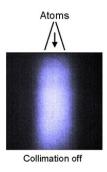
Varying the Doppler Shift

- $\delta + \omega_D << \gamma$
- $\qquad \qquad \omega_D = -\vec{k} \cdot \vec{v} = -kv \cos \theta$
 - Vary θ to change the Doppler shift
- Will also change the transverse velocity component

Broadband Light

- ▶ Use white light
- Frequency range from ω_a to $\omega_a \vec{k} \cdot \vec{v}$
- Requires a lot more light power then other methods


Optical Molasses


- ▶ Three pairs of counter propagating laser beams
- Lasers tuned slightly below atomic resonance

Optical Molasses

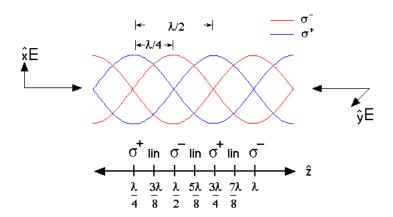
► Atoms will interact more strongly with the laser beam opposing there motion due to the Doppler shift

Atomic Beam Colimation

Collimation

Collimation on

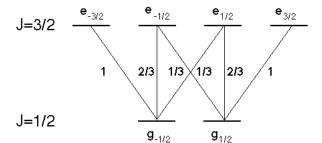
The Doppler Limit

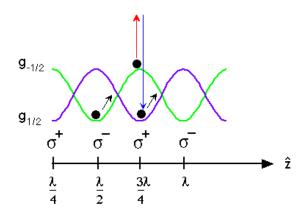

- Momentum steps in absorption and emission are discrete
- ▶ The random nature of the processes produces a random walk
- ► The dampening force counters this random walk (heating)
- In a steady state we obtain the Doppler temperature $T_D = \hbar \gamma/2k_b$
- $ightharpoonup T_D$ is usually below $1\,\mathrm{mK}$

Below the Doppler Limit

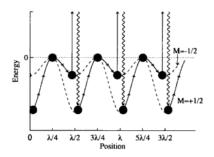
Cooling Below the Doppler Limit

- 1. Linear ⊥ Linear Polarization
- 2. Magnetically Induced Laser Cooling


Linear ⊥ Linear Polarization


Cooling Below the Doppler Limit

- ► Atom in a light field will have it's energy levels shifted due to the Stark effect
- ▶ In the low-intensity limit of two laser beams of intensity s_0I


$$\blacktriangleright \Delta E_g = \frac{\hbar \delta s_0 C_{ge}^2}{1 + (2\delta/\gamma)^2}$$

Sisyphus Cooling

Magnetically Induced Laser Cooling (MILC)

- Standing wave of constant circularly polarized light
- ▶ Light pumps atoms to the $M_g = 1/2$ state
- Magnetic field precesses the population from $M_{g}=1/2$ to $M_{g}=-1/2$

Application

- Bose Einstein Condensate
- Atomic Clocks