
5 The CO₂ laser

The CO₂ laser works in the mid-IR range, $9-11\,\mu\text{m}$, on ca. 100 vibration–rotation transitions. In its classical version it operates at a pressure of 10-20mbar with a mixture of CO₂:N₂:He $\simeq 15\%$:15%:70%. The laser is pumped with current discharge, through a tube of 1-2m, requiring voltages of 10-20kV and a current of 10-20mA. Glass is opaque at $10\mu\text{m}$ so transmissive optics are made of NaCl, ZnSe, Ge or other IR materials.

The vibration level structure of CO_2 and N_2 is shown in the figure. The v_1 mode in CO_2 is the symmetric stretch vibration (the C atom stationary), the v_2 mode is the bending vibration of the otherwise linear molecule and the v_3 mode is the asymmetric stretch vibration.

The N_2 molecule provides an effective pump channel with near resonance with the upper laser level. The energy difference is only $18 \,\mathrm{cm}^{-1}$ compared to $kT = 208 \,\mathrm{cm}^{-1}$ at $T = 300 \,\mathrm{K}$. Helium acts as a cooling medium and speeds up the depopulation of the lower levels.

Each of the vibration levels is split into rotation levels marked with a rotation quantum number J. The rotational energy is given with

$$E_{rot} = BJ(J+1) \tag{1}$$

The energy constant $B \simeq 0.387 \text{cm}^{-1}$ is inversely proportional to the moment of inertia of the molecule. The J levels communicate fast with each other with a lifetime of only a few nanoseconds, whereas the lifetime of the vibration channels is tens of microseconds. We can therefore assume $T_{rot} = T_{transl}$. The rotational population distribution is given with $N(J) = N_{vibr} f_J$, where

$$f(J) = [(2J+1)\exp(-BJ(J+1)/kT)]/Z_{rot}$$
(2)

 Z_{rot} is the partition function for the rotation levels.

Transitions are governed by the selection rules $\Delta J = 0, \pm 1$. Transitions with $\Delta J = +1$ ($J_{lower} - J_{upper}$) are called P-lines, lines with $\Delta J = -1$ R-lines and lines with $\Delta J = 0$ Q-lines. The CO₂ laser has only P- and R-lines since for symmetry reasons the upper laser level has only odd J-values and the lower levels only even J-values. The spectral lines are arranged in

bands Where the R-bands have higher frequency than the P-bands. There is a pair of bands for each of the lower vibration levels. At temperatures relevant to CO_2 laser discharge f_J peaks around J=20 and in each band lasing can be achieved at 20–25 lines. The total number of lines is thus 80-100 all in the range of $9-11\mu$ m.

Line separation is of the order 50 GHz while linewidths are $\Delta v_D = 30 \, \text{MHz}$ and $\Delta v_L = 30 \, \text{MHz}$. Saturation intensity is of the order $100 \, \text{W/cm}^2$ which makes the CO_2 laser a powerful beast. The saturation intensity can be scaled up with pressure as p^2 .

2 02.08 AÓ